ОБ АДАПТАЦИИ В МОДЕЛЯХ РАСТИТЕЛЬНОЙ ПОПУЛЯЦИИ

Воротынцев А.В.

ФИЦ «Информатика и управление» РАН, Москва, Россия avv alexv@mail.ru

Аннотация. Исследуется поведение весьма общей модели роста биомасс популяции растений, максимизирующей продуктивность на конечном отрезке времени в условиях постоянной внешней среды. Формулируется уравнение Беллмана и с его помощью описываются оптимальные управления модели.

Ключевые слова: популяция растений, максимальная продуктивность, агрофитоценоз, математическое моделирование.

Введение

Растительная популяция функционирует в среде, поведение которой частично непредсказуемо или предсказуемо с некоторым распределением вероятности. Параметры среды первого рода будем называть неопределенными, а параметры среды второго рода – случайными. Характерным примером случайных параметров являются метеоданные погоды. Примером неопределенных непредсказуемых параметров среды обитания растительной популяции являются климатические изменения, нашествия вредителей и т.д. Третьим родом параметров среды можно считать полностью предсказуемые параметры, например, величину приходящей радиации в солнечный день, зависящей от движения Солнца. Поведение предсказуемых параметров – стохастическими функциями времени. Неопределенные параметры представляем непредсказуемыми событиями, имеющими определенные последствия для популяции. Влияние совокупности случайных и непредсказуемых параметров среды на функционирование популяции также будем называть неопределенностью среды.

Внутри популяции возникают мутации, изменяющие процессы функционирования и размножения популяции. Функционирование популяции также изменяется временным потоком неопределенностей среды. Как утверждает теория эволюции, в результате таких изменений часть или вся популяция может погибнуть. Оставшаяся часть выживет за счет приспособления к среде с новыми параметрами.

Приспособление или адаптацию растительной популяции, например, злаков к условиям среды можно трактовать как оптимизацию поведения популяции в каждый момент времени с конечной целью максимизации потомства и в конечном счете выживания.

Это положение служит отправной посылкой для усилий построения адаптивной математической модели продукционного процесса популяции растений.

1. Модель роста биомасс РП

Обозначим через Φ_0 – массу углерода ассимилятов чистого фотосинтеза единицы поверхности зеленого листа, а $S_l \Phi_0$ – масса углерода ассимилятов, производимых за единицу времени листьями площади S_l , растущими на единице площади почвы. Доли $\tilde{\rho}_i S_l \Phi_0 \Delta t$, $\Sigma \tilde{\rho}_i = 1$, $\tilde{\rho}_i \ge 0$, всей массы $S_l \Phi_0$ углерода ассимилятов, произведенных листьями за время Δt флоэмой растений направляются на рост биомассы Δm_i , дыхание поддержания $\tilde{R}'_i(T_i)m_i\Delta t$ и дыхания роста $\tilde{R}\Delta m_i$ биомассы m_i каждого *i*-го органа растения, $i \in (l, r, R, s)$.

$$\tilde{\rho}_i S_l \Phi_0 \Delta t = \Delta m_i + \tilde{R}'_i (T_i) m_i \Delta t + \tilde{R} \Delta m_i \,. \tag{1.1}$$

Здесь m_i , $i \in (l, r, R, s)$, обозначает массу углерода в момент времени t в сухой биомассе i-го органа всех растений популяции, произрастающих на единице площади почвы. Далее под биомассой m_i будем понимать указанную массу углерода i-го органа. Таким образом, m_l – это биомасса листьев (leaves), m_r – биомасса корней (roots), m_R – биомасса репродуктивных органов (seeds), m_s – биомасса стеблей (stems, trunks).

Исходя из выражения (1.1), определим модель M_0 следующими выражениями:

$$\frac{a}{dx}m_{i} = \tilde{\rho}_{i}\tilde{P}M - R'_{i}m_{i}, i \in (l, r, R, s), где$$

$$\tilde{P} = \frac{1}{M}\frac{S_{l}\Phi_{0}}{1+\tilde{R}}, R'_{i} = \left(1+\tilde{R}\right)^{-1}\tilde{R}'_{i};$$
(1.2)

 $M = m_l + m_r, \sum_i \tilde{\rho}_i = 1, \ \tilde{\rho}_i \ge 0;.$ (1.3)

$$p = \left(\overline{\mu}_{s}, R_{a}^{0}, d_{a}^{0}, c_{a}^{0}, I_{\Phi}, T_{l}\right) \in \mathbb{R}^{dp}$$

Здесь \tilde{P} – чистый фотосинтез листьев площади S_l , растущих на единице поверхности почвы, поделенный на суммарную биомассу M листьев и корней; R'_i – коэффициент дыхания поддержания, скорректированный на множитель $(1 + \tilde{R})^{-1}$.

Модель M_0 (1.1) – (1.3) определяет динамику (1.2) фазовых переменных $m_i(t)$ в зависимости от заданных функций $\tilde{\rho}_i$, Φ_0 , R'_i , заданных констант растения, а также от набора параметров-функций времени p = p(t). Набор p – это набор dp скалярных параметров $p = (\overline{\mu}_s, R^0_a, d^0_a, c^0_a, I_{\phi}, T_l)$ внешней среды, зависящих от времени. Например, зависимость коэффициентов дыхания $R'_i(T_l) \coloneqq (1 + \tilde{R})^{-1}\tilde{R}'_i(T_l)$ от заданной температуры листьев $T_l(t)$, обозначается как зависимость от полного набора параметров p.

Набор параметров *p* включает следующие параметры внешней среды: $\overline{\mu}_{s}(t)$ – нормированный водный потенциал корнеобитаемого слоя почвы; $R_{a}^{0}(t)$ – поток радиации, поглощенной единицей площади поверхности РП; $d_{a}^{0}(t)$ – дефицит влажности воздуха над РП; $c_{a}^{0}(t)$ – концентрация CO₂ над поверхностью РП; $I_{\phi}(t)$ – поток фотосинтетически активной радиации (ФАР), поглощенной РП, $T_{l}(t)$ – температура листьев.

Модель M_0 (1.2) – (1.3) служит основой построения известных прикладных моделей,[1] – [2] имитирующих продукционный процесс агроэкосистем. В этих моделях, как и в модели M_0 , биомассы m_i считаются фазовыми переменными. Функция Φ_0 определяется зависимостью $\Phi_0(m_i, p)$, например, зависимостью простейшего вида [4]; коэффициенты дыхания $R'_i = R'_i(p)$.

Проблемой является определение ростовых функций $\tilde{\rho}_i$. Насколько это известно автору, функции $\tilde{\rho}_i$ определяются, в частности в [1] – [2] статистическими методами как функции $\tilde{\rho}_i = \tilde{\rho}_i(t, a)$ заданного вида с неизвестными параметрами а, которые оцениваются исходя из натурных данных. Очевидно, что такой простейший подход крайне ограничивает возможность исследования и идентификации прикладных моделей. Это соображение послужило причиной настоящего исследования и приложения теории оптимального управления.

Если в модели M_1 (1.2) - (1.3) функции P и R'_i являются функциями вида

$$P = P(\rho, p), R'_i = R'_i(p), i \in (l, r),$$
а также (1.4)

$$S_l = \beta_l m_l \,, \frac{d}{dx} m_l \ge 0 \,, \tag{1.5}$$

где $\rho = m_r/M$ – доля биомассы корней m_r в биомассе $M = m_r + m_l, p$ – набор параметров. Тогда преобразование:

$$\tilde{P} = (1 - \tilde{\rho}_s)^{-1} P, \, \tilde{\rho}_i = (1 - \tilde{\rho}_s) \rho_i, \, \text{где} \, \tilde{\rho}_s = \tilde{\rho}_s(t), \, i \in (l, r, R);$$

$$(1.6)$$

$$\rho_l = (1 - u_R)(1 - \rho) - \rho_{lr}, \rho_r = (1 - u_R)\rho + \rho_{lr}, \rho_R = u_R,$$

где
$$\rho_{lr} = u_{lr} + \rho(1-\rho)P^{-1}\frac{\partial}{\partial\rho}P$$
. (1.7)

$$lnM = x_1, m_R = x_2, u_R = u_2,$$

$$x = (x_1, x_2), u = (\rho, u_2);$$
(1.8)

приводит [7] – [8] модель M_0 к эквивалентной форме – модели M_1 (1.9) – (1.17). Под эквивалентностью моделей M_0 и M_1 понимается, что из уравнений M_0 следуют уравнения M_1 и наоборот - из уравнений M_1 следуют уравнения M_0 .

Модель M_1 :

Опишем движение фазовых переменных $x = (x_1, x_2)$ под управлением $u = (\rho, u_2, u_{lr})$ системой уравнений

$$\frac{d}{dt}x_1 = v_1, v_1(x, u, p) = \{P_R - u_2 P\};$$
(1.9)

$$\frac{d}{dt}x_2 = v_2, v_2(x, u, p) = \{u_2 P e^{x_1} - R'_R x_2\};$$
(1.10)

$$\frac{d}{dt}\rho = \left\{ u_{lr}P + \rho(1-\rho)\frac{\partial}{\partial\rho}P_R \right\};$$
(1.11)

$$dp = p'(t)dt, p' = \{p'_j(t), j = 1, 2, ...\};$$
(1.12)

где параметры внешней среды р имеют вид:

$$p = (\bar{\mu}_s, R_a^0, d_a^0, c_a^0, I_{\Phi}, T_l, \tilde{\rho}_s); \qquad (1.13)$$

с ограничениями $u \in U(x, p)$ вида:

$$-\{P_R - u_2 P\}\rho \le \frac{d}{dt}\rho \le \{P_R - u_2 P\}(1 - \rho);$$
(1.14)

$$R'_R x_2 e^{-x_1} \le u_2 P \le P_R \,, \tag{1.15}$$

и начальными значениями

$$x_1(t_0) = \ln M(t_0), x_2(t_0) = 0, \rho(t_0) = \rho^0, p(t_0) = p^0 \in \mathbb{R}^{dp};$$
(1.16)

Здесь

$$P_{R} = P_{R}(\rho, p) = P - R, P = P(\rho, p) ,$$

$$R = R(\rho, p) = (1 - \rho)R'_{l} + \rho R'_{r} , R'_{i} = R'_{i}(p) ;$$

$$x_{2} \ge 0, 0 < \rho < 1, 0 \le u_{2} \le 1 - R/P ,$$

$$P(\rho, p) > 0, P_{R}(\rho, p) \ge 0 . R'_{i}(p) > 0, R'_{R}(p) > 0 .$$
(1.17)

Модель M_2 .

Для системы (1.9) – (1.17) модели M_1 с постоянными параметрами p на отрезке времени $t \in [t_0, T]$ определим терминальный функционал

$$J(u) = x_2(T) \to max \quad . \tag{1.18}$$

Назовем соотношения системы (1.9) - (1.18) моделью M_2 .

2. Уравнение Гамильтона-Якоби-Беллмана (HJB)

Для модели M_2 (1.9) – (1.18) рассмотрим совокупность задач

$$dx_{i} = v_{i}(x, u, p)dt ; t \in T_{\tau} = [\tau, T],$$

$$x(\tau) = x , u \in U(x, p) ;$$

$$J_{t}(u) = x_{2}(T) \to \max_{u} ,$$
(2.1)

где v_i определены в (1.9) – (1.10).

Для каждой задачи из совокупности задач (2.1) определим функцию Беллмана V(x, p, t) и функции H(x, u, p, t) при $t_0 \le t \le T$, [6], следующим образом:

$$V(x, p, t) = \max_{u \in U} x_2(T);$$
(2.2)

$$H(x, u, p, t) = \left\{ v_i \frac{\partial V}{\partial x_i} \right\} + \frac{\partial V}{\partial t}, i = 1, 2.$$
(2.3)

Далее предположим, что функция Беллмана достаточно гладкая, т.е. непрерывна и имеет непрерывные частные производные в (2.3). Это допущение будет исследовано в следующей части работы. А пока в защиту этого предположения можно заметить, что функции $P(\rho, p)$ и $R'_i(p)$, определяющие $v_i(x, u, p)$ в (2.1) гладкие бесконечно дифференцируемые функции в области определения.

Пусть из точки X = (x, p, t) выходят две траектории: оптимальная траектория $(x^*(\tau), p, \tau)$, контролируемая оптимальным управлением $u^*(\tau) \in U$ при $\tau \in [t, T]$, и неоптимальная траектория, контролируемая при $\tau \in [t, t + \Delta t]$ произвольным допустимым управлением $u(\tau) \in U$ и контролируемая при $\tau \in [t + \Delta t, T]$ другим оптимальным управлением $u^0(\tau) \in U$. Пусть $X_1 = (x + \Delta x, p, t + \Delta t)$ начальная точка траектории, контролируемой другим оптимальным управлением $u^0(\tau) \in U$.

Таким образом имеется две оптимальные траектории, исходящие из точек X и X_1 и максимизирующие $x_2(T)$. Нетрудно видеть, что функция $V(x, p, t) := \max_{u \in U} x_2(T)$ из (2.2) определена в каждой точке (x, p, t) и постоянна вдоль каждой оптимальной траектории, исходящей из (x, p, t).

Значения функции V различны для различных оптимальных траекторий. Пусть точки X и X₁ лежат на одной траектории дифференциальной системы (1.9) - (1.10), контролируемой управлением $u(t) \in U$ т.е. $\Delta x_i = v_i(x, u, p)\Delta t + o(\Delta t)$.

$$V(x, p, t) = \max_{u[t,T] \in U} x_2(T),$$

$$V(x + \Delta x, p, t + \Delta t) = \max_{u[t+\Delta t,T] \in U} x_2(T).$$

Таким образом, из одной точки X = (x, p, t) выходит две траектории: оптимальная с функционалом V(x, p, t) и допустимая неоптимальная с функционалом $V(x + \Delta x, p, t + \Delta t)$. Очевидно, функционал V(x, p, t) оптимальной траектории не меньше функционала неоптимальной траектории. Следовательно,

$$V(x, p, t) \ge V(x + \Delta x, p, t + \Delta t)$$
или $0 \ge \Delta V,$ (2.4)

Для системы (2.1) равенство $0 = \Delta V$ в (4) достигается, если точки $x + \Delta x$ и x лежат на одной оптимальной траектории, исходящей из точки (x, p, t). Пусть функция V(x, p, t) имеет необходимые производные:

$$\frac{d}{dt}V(x,p,t) = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = \left\{ v_i \frac{\partial V}{\partial x_i} \right\} + \frac{\partial V}{\partial t},$$

Тогда на оптимальной траектории уравнение НЈВ имеет вид

$$0 = \max_{u \in U} H(x, u, p, t) + V_t, \text{для } \forall t \in [t_0, T], \text{где}$$
(2.5)

$$H(x, u, p, t) = v_i V_{x_i}, i = 1, 2.$$
(2.6)

Здесь и далее запись $a_i b_i$ обозначает сумму $\Sigma a_i b_i$ по *i*, в частности $v_i V_{x_i}$ обозначает $\Sigma v_i \frac{\partial V}{\partial x_i}$.

Введем обозначения

$$\rho^{*}(p) = \underset{u}{\operatorname{argmax}} P_{R}(\rho, p), u = (\rho, u_{2}) \in U(x, p);$$
(2.7)

$$P_{R}^{*}(p) = P_{R}(\rho^{*}(p), p), P^{*}(p) = P(\rho^{*}(p), p),$$

$$\varphi_{1} = -V_{x_{1}}(x, p, t) + e^{x_{1}}V_{x_{2}}(x, p, t), \varphi_{2} = -R'_{R}x_{2}V_{x_{2}}(x, p, t);$$

$$\tau_{11} = \{\max \tau \mid P_{R}(\rho(\tau), p) < P_{R}^{*}(p), \ \rho(0) < \rho^{*}(p), \ t_{0} < \tau \le t\}.$$

$$\tau_{12} = \{\max \tau \mid P_{R}(\rho(\tau), p) < P_{R}^{*}(p), \ \rho(0) > \rho^{*}(p), \ t_{0} < \tau \le t\}.$$

$$\tau_{1} \text{ равно } \tau_{11}$$
 или τ_{12} в зависимости от начального $\rho(0).$

$$(2.8)$$

$$\tau_2 = \{\tau \mid \varphi_1(x, p, \tau) = 0, \ \varphi_1(x, p, t) < 0, \tau_1 \le t < \tau\}.$$
(2.9)

$$H(x, u, p, t) = P_R(\rho, p)V_{x_1} + \varphi_1 u_2 P(\rho, p) - R'_R x_2 V_{x_2}, \qquad (2.10)$$

так как

$$\begin{split} H &= \{P_R - u_2 P\}V_{x_1} + \{u_2 P e^{x_1} - R'_R x_2\}V_{x_2}, \\ H &= P_R V_{x_1} + \left\{-V_{x_1} + e^{x_1}V_{x_2}\right\}u_2 P - R'_R x_2 V_{x_2}, \text{ или} \\ H &= P_R V_{x_1} + \varphi_1 u_2 P - R'_R x_2 V_{x_2} \ . \end{split}$$

Таким образом, требуется найти решение V(x, p, t) уравнения НЈВ и оптимальные управление $u^* = (\rho^*, u_2^*)$ и траекторию $x^* = (x_1^*, x_2^*)$ для следующей задачи:

$$H(x^*, u^*, p, t) = -V_t(x^*, p, t), \forall t \in [t_0, T];$$
(2.11)

с краевым условием $V(x^*, p, T) = x_2^*(p, T)$, где

$$H(x^*, u^*, p, t) = \max_{u \in U} H(x^*, u, p, t)$$
для $\forall t \in [t_0, T]$; где (2.12)

$$H(x, u, p, t) = P_R(\rho, p)V_{x_1}(x, p, t) + \varphi_1 u_2 P(\rho, p) - R'_R x_2 V_{x_2}(x, p, t), \qquad (2.13)$$

для системы уравнений (1.9) – (1.10) с ограничениями $u \in U(x, p)$ из (1.14) – (1.15) и с начальными значениями (1.16).

3. Свойства уравнения HJB для модели M₃

Заметим, что в выражении гамильтониана

$$\max_{u \in U} H(x, u, p, t) = V_{x_1} \max_{u \in U} \{P_R(\rho, p)\} + \max_{u \in U} \{\varphi_1 u_2 P(\rho, p)\} - R'_R x_2 V_{x_2}$$

от части u_2 управления $u = (\rho, u_2)$ зависит только член $\varphi_1 u_2 P(\rho, p)$, где

$$\varphi_1 = -V_{x_1}(x, p, t) + e^{x_1}V_{x_2}(x, p, t) \,.$$

А) Поскольку всегда $P(\rho, p) > 0$ максимум $\max_{u_2} H(x, u, p, t)$ в (2.12) при $\varphi_1 < 0$ достигается при $u_2 = 0$.

В этом случае система (1.9) - (1.10) модели M₂ приобретает вид:

$$\frac{d}{dt}x_1 = P_R(\rho, p), \ \frac{d}{dt}x_2 = 0 \ ; \ t_0 \le t \le \tau_2 \ ; \tag{3.1}$$

$$-\rho P_R \le \frac{a}{dt}\rho \le (1-\rho)P_R; \qquad (3.2)$$

$$H(x, u, p, t) = P_R(\rho, p) V_{x_1}.$$
(3.3)

В самом деле, из неравенства $R'_R x_2 e^{-x_1} \le u_2 P$ из (1.15) при $u_2 = 0$ и $x_2 \ge 0$ следует $x_2 = 0$. Тогда $\dot{x}_2 = \{u_2 P e^{x_1} - R'_R x_2\}$ из (1.10) влечет $\dot{x}_2 = 0$. Равенство $x_2(t) = 0$ отвечает начальному условию $x_2(t_0) = 0$ из (1.16).

Оптимальное $\rho(t)$ для (3.1) – (3.3) определяется как $\rho(t) = \rho^*(p)$. Сопряжение оптимального $\rho(t)$ с начальным значением $\rho(t_0)$ при $t \le t \le \tau_1$ осуществляется в зависимости от соотношения $\rho(t_0)$ и $\rho^*(p)$ решением уравнения $d\rho/dt = -\rho P_R(\rho, p)$ либо $d\rho/dt = (1 - \rho)P_R(\rho, p)$ из (3.2).

В) Поскольку всегда P(ρ , p) > 0 максимум max H(x, u, p, t) в (2.12) по $u_2 < 1 - R/P$ при $\phi_1 > 0$ достигается при $u_2 = 1 - R/P$ или $u_2P = \{1 - R/P\}P = P_R$.

В этом случае система (1.9) – (1.10) модели M₂ приобретает вид:

$$\frac{d}{dt}x_1 = 0; \frac{d}{dt}x_2 = \{P_R e^{x_1} - R'_R x_2\}; \tau_2 \le t \le T;$$
(3.4)

$$\frac{a}{dt}\rho = 0; \qquad (3.5)$$

$$H(x, u, p, t) = \{P_R e^{x_1} - R'_R x_2\} V_{x_2}.$$
(3.6)

В самом деле, из $\dot{x}_1 = \{P_R - u_2 P\}$ при $u_2 P = P_R$ следует $\dot{x}_1 = 0$. Также из неравенства (1.14) при $u_2 P = P_R$ следует $\dot{\rho} = 0$. Следовательно, при заданных постоянных параметрах p = p(t) и постоянном $\rho(t)$ величины $P_R = P(\rho, p) - R(\rho, p)$, а также $x_1(t)$ и $R'_R(p)$ постоянны.

Оптимальное $\rho(t)$ для (3.1) – (3.3) определяется как $\rho(t) = \rho^*(p)$.

4. Заключение

Исследовано поведение весьма общей модели роста биомасс популяции растений, максимизирующей продуктивность на конечном отрезке времени в условиях постоянной внешней среды. Сформулировано уравнение Беллмана и с его помощью частично описаны оптимальные управления и траектории модели. В последующей части статьи будет найдена функция Беллмана и завершено решение поставленной задачи.

Литература

- 1. Полуэктов Р.А. Смоляр Э.И., Терлеев В.В., Топаж А.Г. Модели продукционного процесса сельскохозяйственных культур. – СПб.: Изд-во СПбУ, 2006. – 396 с.
- 2. *Сиротенко О.Д.* Математическое моделирование водно-теплового режима и продуктивности агроэкосистем. Л.: Гидрометеоиздат, 1981. –176 с.
- 3. *Бихеле З.Н., Молдау Х.А., Росс Ю.К.* Математическое моделирование транспирации и фотосинтеза растений при недостатке почвенной влаги. Л.: Гидрометеоиздат, 1980. 223 с.

- 4. *Chartier P.* A model of CO2 assimilation in the leaf // Prediction and measurement of photosynthetic productivity, Ed. I. Setlik. Wageningen: Pudoc, 307–315, 1970.
- 5. *Торнли Дж.Г.М.* Математические модели в физиологии растений. Пер. с англ. Киев: Наук. думка, 1982. 312 с.
- 6. Габасов Р., Кириллова Ф.М. Основы динамического программирования. Минск: Изд-во БГУ им. В. И. Ленина, 1975.
- 7. Воротынцев А.В. К построению адаптивной модели растительного покрова // Евразийский Союз Ученых. Серия: технические и физико-математические науки. 2021. Том 1. N 10(91). С. 47–53. DOI: 10.31618/ESU.2413-9335.2021.1.91.1474.
- 8. Воротынцев А.В. О моделировании распределения ассимилятов фотосинтеза растительного покрова // Современная наука: Актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2022. №3. С. 55–58. DOI: 10.37882/2223-2966.2022.03.08.