СЕКЦИЯ 12

ИНФОРМАЦИОННОЕ И ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ СИСТЕМ УПРАВЛЕНИЯ КРУПНОМАСШТАБНЫМИ ПРОИЗВОДСТВАМИ

НЕЙРОСЕТЕВЫЕ МОДЕЛИ КАРТ ГЕОФИЗИЧЕСКИХ ПОЛЕЙ ЗЕМЛИ ДЛЯ ФИЗИЧЕСКОГО ПОЛИГОНА¹

Амосов О.С., Амосова С.Г.

Институт проблем управления им. В.А. Трапезникова РАН, Москва, Россия osa18@yandex.ru, amosovasg@yandex.ru

Аннотация. Рассмотрена возможность построения для навигации беспилотных аппаратов нейросетевых пространственных моделей магнитного и гравитационного полей Земли, а также моделей поверхностных полей высот или батиметрических данных дна водоема. Показана возможность построения на основе их объединения нейросетевой модели мультигеофизического поля. Приведен иллюстрирующий пример.

Ключевые слова: беспилотный аппарат, навигация, геофизическое поле, цифровая карта, нейросетевая модель.

Введение

Актуальной проблемой сегодняшнего дня для беспилотных аппаратов (БА) является метод навигации по геофизическим полям (ГФП) в случае невозможности использования спутниковых и других радиотехнических средств измерений [1–3]. Особенно это касается подводных БА. Задача навигации по геофизическим полям является одной из самых сложных задач, с которыми приходится сталкиваться на практике при обработке навигационной информации. Благодаря стабильности составляющих магнитного и гравитационного полей Земли в локальной местности, создаются благоприятные условия для применения геофизических полей Земли для осуществления навигации беспилотных аппаратов на ограниченной местности[4, 5].

Основная цель автономной навигации беспилотного аппарата заключается в выполнении двух ключевых задач: создании карты местности и определении местоположения аппарата на этой карте. Эффективное управление БЛА требует наличия точной карты и возможности отслеживания текущих координат положения аппарата, а также маршрута его перемещения.

Существует неоднозначность термина "карта". Она может быть представлена в различных измерениях: 2D, 2.5D, 3D, и включать в себя разнообразные элементы, такие как точки для описания траекторий или геометрии пространства, ячейки для обозначения свободных и занятых зон. Использование топологических карт, где объекты сгруппированы по определенным признакам, также вносит свой вклад в разнообразие подходов. Это разнообразие может, как облегчить, так и усложнить процесс решения задачи автономного перемещения беспилотного аппарата.

Поэтому основной акцент в работе сделан нами на возможности построения моделей поверхностных полей высот или батиметрических данных дна водоема, пространственных моделей гравитационного и магнитного полей Земли и на их основе – пространственной модели мультигеофизического поля, с использованием машинного обучения и нейросетевой технологии для аппроксимации цифровых карт указанных полей. Использование указанных технологий позволит повысить быстродействие бортовой обработки навигационной информации и значительно сократить объем памяти для представления точных карт местности.

1. Постановка задачи

Необходимо для выбранного ограниченного физического полигона создать:

- цифровые модели высотной и батиметрической карт, карт гравитационного и магнитного полей Земли;
- на основе созданных карт создать цифровую карту мультигеофизического поля ограниченного физического полигона;

¹Работа проводилась при поддержке гранта РНФ № 24-29-00671, https://rscf.ru/project/24-29-00671/

• для всех созданных цифровых карт сгенерировать нейросетевые модели карт с использованием нейронных сетей для аппроксимации цифровых карт.

2. Создание цифровых карт геофизических полей Земли

2.1. Краткое описание геофизических полей Земли

Геофизические поля Земли бывают дух видов: поверхностные и пространственные [4, 5].

Рельеф земной поверхности определяет поверхностное поле. Поле рельефа земной поверхности характеризуется взаимным расположением высот, т.е. перепадами местности относительно какоголибо уровня. Перепады местности носят геометрический смысл,

Для подводных и надводных БА используется батиметрическая карта дна водоема. Батиметрические данные о морском дне могут быть получены с помощью многолучевого гидролокатора. Для наземных и воздушных объектов используется карта высот. Данные о высоте точек рельефа земной поверхности могут быть получены от высотомеров, радиолокаторов.

Из пространственных полей будем рассматривать магнитное (МПЗ) и гравитационное (ГПЗ) поля Земли. В отличие от поверхностных полей пространственные являются глобальными, зависят от трех координат (зависят от высоты) и измерять параметры этих полей можно только в точке, где находится датчик [5]. Информативной для навигации является аномальная составляющая, определяемая в основном неоднородностью земной коры по плотности для ГПЗ и по проводимости для МПЗ, что, в сущности, и определяет стабильность и помехозащищенность этих полей.

Измеряемыми параметрами пространственных полей являются [5]:

- для МПЗ модуль вектора магнитной индукции и составляющие вектора (северная, восточная и вертикальная);
- для ГПЗ 1-е производные гравипотенциала (3 компоненты ускорения силы тяжести) и 2-е производные гравипотенциала (9 компонент градиента силы тяжести).
- Системы навигации и наведения по пространственным полям можно разделить на системы с [5]:
- навигацией по модулю вектора магнитной индукции;
- навигацией и наведением по вектору магнитной индукции;
- навигацией по аномалиям силы тяжести;
- навигацией и наведением по градиентам силы тяжести.

В магнитометрических системах навигации используются инерциальная навигационная система (ИНС), магнитометр, баровысотомер и компьютер с бортовой базой картографических данных.

Погрешности съемок для цифровых моделей геомагнитного поля составляют от 3 до 40 нТл и более [5].

В гравиметрических системах навигации используются ИНС, гравиметр, гравивариометр, баровысотомер, компьютер с бортовой базой с гравиданными.

Для цифровых карт (моделей) параметров ГПЗ среднеквадратическая погрешность определения высоты квазигеоида, аномалии силы тяжести и составляющих уклонения отвесной линии составляют 0,1–0,3 м, 5–7 мГал и 0,5–2 угловых секунд соответственно [5].

2.2. Цифровые карты геофизических полей Земли

Понятие "карта" в контексте автономной навигации действительно имеет множество интерпретаций и может быть представлено в различных формах. Вот более подробное описание различных типов карт:

2D-карты: обычно представляют собой плоские изображения окружающей среды, где каждая точка соответствует определенной позиции в реальном мире. Они могут быть полезны для задач, где высота объектов не играет роли.

2.5D-карты: эти карты добавляют элемент высоты к 2D-картам, что позволяет представить неровности поверхности, такие как холмы и ямы.

3D-карты: они предоставляют полное трехмерное представление пространства, включая высоту, ширину и глубину, что идеально подходит для сложных сред и для БА, которые перемещаются в трех измерениях, например, летательные аппараты.

Карты на основе точек: Описывают пространство с помощью множества точек, которые могут представлять траектории движения или ключевые особенности окружающей среды.

Карты на основе ячеек: Разделяют пространство на сетку ячеек, каждая из которых может быть помечена как свободная, занятая или неизвестная.

Топологические карты: Представляют пространство с помощью узлов и ребер, где узлы могут представлять определенные объекты или места, а ребра – связи между ними.

Каждый из этих подходов имеет свои преимущества и недостатки и может быть выбран в зависимости от конкретных требований задачи и характеристик окружающей среды. Разработчики систем автономной навигации должны тщательно выбирать тип карты, который наилучшим образом соответствует их целям и условиям работы БА.

Существуют готовые базы данных рельефа земной поверхности и морского дна, гравитационного поля Земли и магнитного поля Земли. Это общедоступная база батиметрических данных мирового океана GEBCO_2019 [6] с пространственным разрешением 15 угловых секунд. База данных гравитационного поля Земли основана на данных о гравитационных аномалиях, опубликованных Европейским космическим агентством с пространственным разрешением 2 минуты [7]. Данные о магнитном поле Земли основаны на данных о градиенте магнитного поля EMM2017 [8] с пространственным разрешением 0,6 минуты и составлены на основе спутниковых, морских, аэромагнитных и наземных магнитных исследований.

Можно построить карту гравитационного поля с помощью модели EGM 2008 [9].

Учитывая их разное разрешение, пространственное разрешение баз данных слияния может быть унифицировано, например, методом билинейной интерполяции [10].

В качестве средств визуализации карты используются пакеты Gazebo и Rviz, которые являются частью пакета Robot Operating System. Gazebo позволяет моделировать физические свойства беспилотного аппарата, показания различных датчиков и т. д. Rviz позволяет создавать виртуальную модель аппарата и визуализировать показания датчиков, карты, маршруты, изображения с камеры. Также существуют такие программы, как Unity, Unreal Engine, позволяющие создать 3D карты реалистичной среды с заданными ограничениями параметров и оценивать время, затрачиваемое на

Модели управления группами беспилотных аппаратов в сложных неопределенных трехмерных средах [12] могут быть предварительным этапом для натурных экспериментов и позволять имитировать непосредственные сигналы, подаваемые на органы движения БА. При этом модельные среды позволяют симулировать более сложные ситуации, чем лабораторные эксперименты, и использовать количество БА, ограниченное только вычислительными мощностями установки. Использование имитационных моделей позволяет оценивать ограничения, возникающие в ходе движения БА в реальной среде, такие как погрешности локализации аппаратов [13] или информационное обеспечение БА в процессе картографирования окружающей среды [14].

3. Создание нейросетевых моделей геофизических полей Земли

3.1. Обоснование нейросетевой аппроксимации цифровых карт

планирование глобальных маршрутов движения [11].

Аппроксимацию поверхностей и пространственных полей на картах можно выполнять с помощью методов машинного обучения и нейронных сетей.

Рассмотрим двухслойную (один скрытый и один выходной слои) нейронную сеть с *n* входами и одним выходом. Структура данной сети проста и в то же время часто применятся на практике. Каждый *i*-й нейрон (*i* = 1.*m*) скрытого слоя имеет *n* входов, которым приписаны весовые коэффициенты $w_{1i}, w_{2i}, ..., w_{ni}$. Получив входные сигналы, нейрон суммирует их с соответствующими весами, затем применяет к этой сумме функцию активации и подает результат на вход нейрона выходного слоя. Нейрон выходного слоя суммирует полученные от скрытого слоя сигналы с весами $v_i, i = 1.m$. Будем считать, что в качестве функций активации скрытого слоя используются сигмоидальные функции, а выход сети будет являться суммой взвешенных выходов скрытого слоя.

Подавая на входы сети любые числовые значения $x_1, x_2, ..., x_n$, мы получаем на выходе значение некоторой функции $y = F(x_1, x_2, ..., x_n)$, которое является ответом (реакцией) сети. Очевидно, что ответ сети зависит и от входного сигнала и от значений весов нейронов. Точный вид этой функции имеет вид:

$$F(x_1, x_2, ..., x_n) = \sum_{i=1}^m v_i \sigma(\sum_{j=1}^n x_j w_{ji}),$$

где $\sigma(s)$ – функция активации нейронов скрытого слоя.

В 1957 году выдающийся советский математик А.Н. Колмогоров доказал знаменитую теорему [15], которая послужила математической основой нейронных сетей. Теорема показывает

принципиальную возможность реализации сколь угодно сложных зависимостей с помощью относительно простых конструкций типа нейронных сетей. Спустя время, в 1989 году были достигнуты значимые для практики результаты в этом направлении [16–18], которые были описаны следующей теоремой:

Существуют число т, набор чисел w_{ii} и набор чисел v_i такие, что функция

$$f(x_1, x_2, ..., x_n) = \sum_{i=1}^m v_i \sigma(\sum_{i=0}^n x_j \cdot w_{ij})$$
 приближает данную функцию $F(x_1, x_2, ..., x_n)$ с погрешностью не

более ξ на все области определения, где $\xi > 0$ – сколь угодно малое число, означающее точность аппроксимации.

Как видно данная формула полностью совпадает с выражением, полученным для функции, реализуемой нейронной сетью. В терминах теории нейронных сетей эту теорему можно сформулировать следующим образом: любую непрерывную функцию нескольких переменных можно с любой точностью реализовать с помощью двухслойной нейронной сети с достаточным количеством нейронов в скрытом слое.

Сравнение качества работы нейросетевого алгоритма аппроксимации осуществляется на основе критерия вычисляемой среднеквадратической ошибки.

Достоинствами неросетевых моделей цифровых карт является их быстродействие при вычислении в реальном времени и малый объем памяти для хранения, что весьма важно при навигации автономных БА.

3.2. Мультикарта геофизических полей

Идея использования мультигеофизической БД и объединения использования трех геофизических полей состоит в их взаимном дополнении друг друга.

Мультигеофизичесая база данных представляет собой слияние нескольких геофизических полей для их совместного использования. Такая мультикарта включает: высотную (батиметрическую) БД, БД магнитного и БД гравитационного полей Земли. Учитывая их разное разрешение, пространственное разрешение базы данных слияния возможно за счет использования их нейросетевых моделей.

3.3. Использование нейросетевой модели карты при комплексировании информации

Точность использования цифровой карты геофизического поля местности зависит от степени достоверности и детальности, которую получают с помощью измерительных систем и устройств.

Так, например, для формирования эталонной карты рельефа местности информацию получают от радиолокаторов, установленных на ИСЗ; аэросъемки местности; детальных топографических карт и других источников информации. Чем выше разрешающая способность измерительного средства, тем более подробной будет эталонная карта местности (ЭКМ) и тем выше потенциальная точность, которую она может обеспечить [19].

Однако при большой протяженности маршрута, для которого составляется эталонная карта, и большой детальности последней требуется большой объем памяти бортового компьютера. Поэтому при выборе параметров ЭКМ исходят из компромисса между требуемой точностью и объемом памяти системы. Один из таких компромиссных подходов заключается в том, что в качестве основного навигационного средства используется система счисления пути, а цифровая карта служит для коррекции этой системы на отдельных участках траектории движения объекта [19].

Другим предлагаемым нами подходом для обеспечения требуемой точности при использовании цифровой карты в любой точке местности является использование нейросетевой аппроксимации цифровых карт геофизических полей. Это позволяет снизить огромный объем памяти, занимаемый картой, за счет машинного обучения с учителем, которое занимает значительное время, но проводится в режиме off-line и до использования ГФП в процессе движения. А в режиме реального времени on-line в процессе движения БА тривиально вычисляются значения параметров ГФП по соответствующим «нейросетевым» картам $\phi^{K}(\bullet)$, в точке пространства, определяемой координатами ИНС по выражению [20]

$$\mathbf{Y}^{\mathrm{K}} = \boldsymbol{\phi}^{\mathrm{K}}(\mathbf{X}^{\mathrm{HC}}) + \Delta \mathbf{Y}^{\mathrm{K}},\tag{2}$$

где ΔY^{K} – ошибка, вызванная картографированием и нейросетевой аппроксимацией.

Внешний датчик обеспечивает измерения некоторого геофизического поля (параметра) *l*, которые могут быть представлены в виде:

$$\mathbf{Y}^{\boldsymbol{\mu}} = \boldsymbol{\phi}^{\mathrm{K}}(\mathbf{X}) + \Delta \mathbf{Y}^{\boldsymbol{\mu}}, \qquad (3)$$

где $\Delta \mathbf{Y}^{\mathcal{I}}$ – погрешность измерений датчика.

Задача заключается в том, чтобы, располагая набором измерений $\mathbf{Y}^{\text{Д}}_{,}$ получить оценки погрешностей ИНС $\Delta \hat{\mathbf{X}}^{\text{HC}}$, с использованием которых можно было бы уточнить показания ИНС.

4. Пример реализации нейросетевой модели для поля рельефа

Рассмотрим простейший пример нейросетевой модели для поля рельефа земной поверхности. На рис. 1а представлена модель цифровой карты ограниченного физического полигона размером 1000 х 1000 м и дискретностью 10 м. На рис. 1б представлена нейросетевая модель, полученная путем аппроксимации цифровой карты с использованием двухслойной нейронной сети с одним скрытым слоем [21].

Число нейронов в скрытом слое выбирается так, чтобы получить необходимую точность аппроксимации. В рассматриваемом примере выбран распространенный способ измерения точности нейронной сети: в качестве метрики оценки функциональной корректности (характеристики точности) выбрана средняя квадратичная ошибка (mean squared error, mse) *D*

$$D = \frac{1}{K} \sum_{k=1}^{K} (y_k - \tilde{y}_k)^2$$

где K – размер выборки, y_k – фактическое значение данных, \tilde{y}_k – прогнозируемое значение данных.

При количестве нейронов в скрытом слое 25, значение *D* составляет около 3,6 для 50 эпох обучения нейронной сети по алгоритму байесовской регуляризации (рис. 1в). В скрытом слое нейронной сети используется сигмоидальная функция активации, а в выходном слое – линейная.

Для точных детальных карт и карт больших территорий геофизических полей могут быть использованы глубокие нейронные сети [22].

В качестве глубоких нейронных сетей для оценивания состояния динамических систем могут рассматриваться сети со сверточными и рекуррентными слоями, рекуррентная сеть долгой краткосрочной памяти (англ. Long Short-Term Memory, LSTM), управляемых рекуррентных блоков (англ. Gated Recurrent Units, GRU) [22].

Рис. 1. Модели для поля рельефа: а – цифровая модель; б – нейросетевая модель; в – тяе

5. Заключение

Рассмотрена возможность построения для навигации беспилотных аппаратов нейросетевых пространственных моделей магнитного и гравитационного полей Земли, а также моделей поверхностных полей высот или батиметрических данных дна водоема. Показана возможность построения нейросетевой модели мультигеофизического поля на основе объединения геофизических магнитного и гравитационного полей и поля рельефа для их взаимного дополнения друг друга. Приведен иллюстрирующий пример нейросетевой модели для поля рельефа земной поверхности.

Литература

- 1. Степанов О.А., Торопов А.Б. Методы нелинейной фильтрации в задаче навигации по геофизическим полям. ЧАСТЬ 1. Обзор алгоритмов // Гироскопия и навигация, 2015. №3(90). С. 102-125.
- 2. *Степанов О.А., Торопов А.Б.* Методы нелинейной фильтрации в задаче навигации по геофизическим полям. ЧАСТЬ 2. Современные тенденции развития // Гироскопия и навигация, 2015. № 4(91). С. 147-159.
- Stepanov O.A., Amosov O.S., Toropov A.B. Comparison of Kalman-type Algorithms in Nonlinear Navigation Problems for Autonomous Vehicles // Proceedings of the 6th IFAC Symposium Autonomous Vehicles. IFAC Proceedings Volumes (IFAC-PapersOnline). – Toulouse, France, September 3-5, 2007. – Vol. 6. – Iss. PART 1. – P. 493-498.
- 4. Белоглазов И.Н., Джанджгава Г.И., Чигин Г.П. Основы навигации по геофизическим полям. М.: Наука. Главная редакция физико-математической литературы, 1985. – 328 с.
- 5. Джанджгава Г.И., Герасимов Г.И., Августов Л.И. Навигация и наведение по пространственным геофизическим полям // Известия ЮФУ. Технические науки, 2013. № 3 (140). С. 74-84.
- General Bathymetric Chart of the Oceans [Электронный ресурс] Режим доступа: https://www.gebco.net/ (дата обращения 18.06.2024).
- 7. European Space Agency [Электронный ресурс] Режим доступа: http://eo-virtual-archive1.esa.int (дата обращения 18.06.2024).
- Enhanced Magnetic Model (ЕММ) [Электронный ресурс] Режим доступа: https://www.ngdc.noaa.gov/geomag/EMM/ (дата обращения 18.06.2024).
- Степанов О.А., Васильев В.А., Торопов А.Б. Решение задачи навигации по геофизическим полям с учетом изменчивости погрешностей корректируемой навигационной системы // XXIX Санкт-Петербургская международная конференция по интегрированным навигационным системам. Санкт-Петербург: АО «Концерн «ЦНИИ «Электроприбор», 2022. С. 60–65
- 10. *Li Z.Y., Yu H.P., Shen T.Sh., Li Zh.H.* Segmented Matching Method of Multi-Geophysics Field SLAM Data Based on LSTM // 2020 3rd IEEE International Conference on Unmanned Systems (ICUS), 2020. P.6.
- 11. *Моторин Д.Е.* Исследование полимодельного комплекса системы планирования движения гетерогенной группы автономных роботов в условиях пространственно-ситуационной неопределенности // Робототехника и техническая кибернетика, 2019. 7(4). С. 291-299.
- Пшихопов В.Х. Групповое управление движением мобильных роботов в неопределенной среде с использованием неустойчивых режимов. – Текст: непосредственный / В.Х. Пшихопов, М.Ю. Медведев // Труды СПИИРАН. – (2018). – 5(60). – 39-63.
- 13. Зенкевич С.Л. Движение группы мобильных роботов в строю типа «конвой» теория, моделирование и эксперимент. Текст: непосредственный / С.Л. Зенкевич, Хуа Чжу, Цзяньвень Хо // Четвертый всероссийский научно-практический семинар «Беспилотные транспортные средства с элементами искусственного интеллекта» (БТС-ИИ-2017), Казань, 05-06 октября 2017 г. С. 136-147.
- 14. Сапрыкин Р.В. Алгоритмы информационного взаимодействия интеллектуальных мобильных роботов при картографировании внешней среды функционирования. – Текст: непосредственный / Р.В. Сапрыкин // Известия ЮФУ. Технические науки. – 2015. – С. 164-174.
- 15. Колмогоров А.Н. О представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного и сложения // Докл. АН СССР. 1957. Т.114. № 5. С. 953-956.
- 16. Cybenko G. Approximation by Superpositions of a Sigmoidal Function // Mathematical Control Signals Systems, 1989. -Vol. 2. pp. 303-314.
- 17. *Funahashi K.-I.* On the Approximate Realization of Continuous Mappings by Neural Networks // Neural Networks, 1989. Vol.2, Iss.3. pp. 183-192.
- Hornick K., Stinchcombe M., White H. Multilayer Feedforward Networks are Universal Approximators // Neural Networks, 1989. – Vol.2, Iss.5. – pp. 359-366.
- 19. Котенко П.С., Закирьянов А.Г. Бортовые вычислительные комплексы навигации и самолетовождения: учебное пособие. – Уфа: УГАТУ, 2019.
- 20. Amosov O.S., Amosova S.G. The Concept of Joint Navigation and Communication for a Heterogeneous Group of Autonomous Uncrewed Vehicles Located in Different Environments // Proceedings of the 15th International Conference Management of Large-Scale System Development (MLSD), Moscow: IEEE, 2022.
- 21. Stepanov O.A., Amosov O.S. The Comparison of the Monte-Carlo method and neural networks algorithms in nonlinear estimation problems // 9th IFAC Workshop "Adaptation and Learning in Control and Signal Processing", ALCOSP'2007. IFAC Proceedings Volumes (IFAC-PapersOnline). – Saint Petersburg. 2007. – Vol. 9. Issue PART 1. – P. 392–397.
- 22. Амосов О.С., Амосова С.Г. Оптимальное оценивание с использованием глубоких нейронных сетей применительно к навигации и управлению движением / Материалы 32-й конференции памяти выдающегося конструктора гироскопических приборов Н.Н. Острякова (Санкт-Петербург, 2020). СПб.: ГНЦ РФ АО «Концерн «ЦНИИ «Электроприбор», 2020. С. 160-164.