СЕЙСМИЧЕСКИЕ СТРУКТУРЫ, ПОЛУЧЕННЫЕ НА ГЛУБИНАХ РИСКА БУРЕНИЯ ПО ДАННЫМ МОНИТОРИНГА АРКТИЧЕСКОЙ АКВАТОРИИ ПОТЕНЦИАЛЬНОГО РАЗМЕЩЕНИЯ ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ¹

Смагличенко Т.А., Саянкина М.К., Институт проблем нефти и газа РАН, Москва, Россия tasmaglichr@gmail.com, msayankina@gmail.com Смагличенко А.В.

Институт сейсмологии и геодинамики, КФУ им. В.И. Вернадского, Симферополь, Республика Крым losaeylin@gmail.com

Аннотация. Сейсмическая модель построена для залива Скьяльфанди (север Исландии), где возникают выбросы метана. Скоростные аномалии, выявленные на глубинах риска бурения с применением метода выбранного координатного спуска, могут использоваться для принятия управленческих решений о разработке месторождений в провинциях высокоширотной Арктики.

Ключевые слова: вычислительные методы, скопление углеводородов, метан, скорость сейсмической волны.

Введение

Бурение поисково-разведочных скважин – основная составляющая геологических работ для обнаружения запасов нефти и газа. Например, в акватории Азовского моря эксплуатируются несколько газоконденсатных месторождений, которые были определены путем бурения скважин, отбора в них керна, проведения каротажных работ [1]. Вскрытые скважины позволили не только оценить присутствие месторождений, но и по глубинным породам уточнить детали геологических структур региона. Глубина пробуренных скважин в районах добычи часто достигает 3.1 км [2].

Глубина бурения в регионах, в которых существуют источники тепловой энергии, варьируется от 2 до 3 км. Увеличение глубины бурения способно создать экологические риски. Так, на северо-востоке Исландии бурение до глубины 4.5 км привело к ситуации, когда флюиды с очень высокой температурой попали в скважину и обрушили ее [3]. Это привело к необходимости цементирования скважины в течение трех месяцев, к заполнению специальным раствором образовавшихся пустот. Химические реагенты, в том числе, реагенты цементного камня имеют токсичные примеси и могут загрязнять окружающую среду [4].

В данной работе исследуются сейсмические структуры в диапазоне глубин 5-10 км. Вариации сейсмической скорости были определены для района залива Скьяльфанди (север Исландии), на побережье которого расположен туристический город Хусавик, где в 2018 г. был введен в эксплуатацию крупный завод по производству металлического кремния. Изучение сейсмических параметров на глубинах свыше 5 км имеет практическое значение. Так, в 2001 г. в заливе Скьяльфанди на дне океана на глубинах осадочного слоя (толщина 0.5-4 км) были отмечены выбросы метана. Акустическое просвечивание показало, что выход газа идет из нескольких неглубоких дыр вытянутых впадин диаметром до 30 метров [5]. В [6] анализ кернов, извлеченных из океанических осадсков с глубиной приповерхностного слоя 5 метров, показал, что газ имеет биогенное происхождение. Авторы [6] предполагают, что такое активное просачивание метана может быть связано с образованием нефти и газа в глубоких слоях.

Выводы [6] подтверждаются в работе [7] фактами обнаружения полициклических ароматических углеводородов в пробах обломочных отложений, взятых из пробуренных скважин. Природные полициклические ароматические углеводороды могут образовываться либо в осадочной толще, либо глубже под влиянием процесса переработки газов, в том числе и метана [7]. Практика добычи полезных ископаемых в других районах мира [8] свидетельствует, что полициклические ароматические углеводороды часто являются индикаторами нефтеносных районов. Поэтому их обнаружение в заливе при совместном факте выбросов метана позволяет предположить присутствие залежи. Заметим, что анализ изменения локальных мест нахождения полициклических ароматических углеводородов в поверхностных отложениях может выявить миграцию углеводородов в глубоких слоях [7].

В настоящей работе мы представляем результат вычисления значений сейсмической скорости в районе залива Скьяльфанди, полученный на основе решения систем линейных уравнений методом

¹ Работа выполнена в рамках государственного задания № 122022800270-0

выбранного координатного спуска (ВКС) [9], используя в качестве известных членов системы информацию о зарегистрированных локальных землетрясениях. Мониторинг проводился временными сейсмическими станциями, расположенными вдоль береговой линии залива. Скоростная структура впервые демонстрируется для исследуемого залива Гренландского моря на севере Исландии в диапазоне глубин 5-10 км, имеющего приемлемые показатели параметра разрешения метода.

Сопутствующий аспект необходимости изучения характеристик данного слоя – существование сейсмического риска. Исторические записи говорят о том, что два значимых землетрясения произошли в заливе Скьяльфанди. В 1755 г. сильные волны, подобные цунами, перевернули пару лодок, погибли люди, а прибрежное поселение Хусавик было полностью разрушено. Событие связали с активностью разлома, так как разлом Хусавик, расположенный в море, вклинивается в часть города с одной стороны и проходит под ним в другую часть залива, тоже примыкающую к городу. Мощные толчки следующего мощного землетрясения 1872 г. также объясняют активизацией разлома. Исторические материалы указывают, что на мысе открылись трещины, и четыре дня струилось что-то вроде голубого газа, от места исходил сильный жар, были вспышки. Океан отступил, а затем вернулся с сильными волнами, обрушившимися на береговую линию. И город во второй раз остался в руинах. В связи с этими фактами отметим другое известное землетрясение, которое произошло в 1927 г. в южной части полуострова Крым. Оно также сопровождалось присутствием цунами на некоторых побережьях. А во время основного толчка наблюдались вспышки огня. Научные доводы подтверждают, что огненные столбы были выходом метана из мест глубоких подвижек, которые проявились трещинами на дне моря [10]. Опыт Крымского землетрясения и недавние инструментальные наблюдения в заливе Скьяльфанди позволяют предположить, что с большой вероятностью вспышки газа в 1872 г. на мысе Хусавик были метаном. Современные методы, уточняющие координаты гипоцентров землетрясений, которые происходят вдоль разлома Хусавик, указывают на то, что сейсмические события в основном распределены в диапазоне глубин 4-8 км [11], где следует ожидать локацию основных разломных трещин. Следовательно, изучаемый в нашей работе слой на глубинах 5-10 км важен для понимания связи между геодинамическим состоянием среды и возможным присутствием углеводородов.

Применяемая вычислительная технология является новым вариантом традиционно используемого в различных областях промышленности метода координатного спуска. В отличие от обычного спуска, который определяет координату, циклически проверяя вероятностные критерии на близость решения к минимуму функционала в смысле наименьших квадратов, ВКС использует аналитическое выражение для параметра, максимальное значение которого ответственно за минимум данного функционала [12]. Итерационный спуск по максимальным значениям оценок неизвестных членов системы формирует отличительную черту ВКС, которая – в способности идентифицировать контрастные неоднородности геологической среды. Для того чтобы сделать использование ВКС понятным для специалистов, работающих в нефтегазовой отрасли, в настоящей работе мы приводим расчетные формулы для основных шагов ВКС в терминах геофизических параметров, в отличие от предыдущей работы [12], где дано описание ВКС как алгебраического метода.

1. Математическая модель вариаций скорости сейсмической волны в блоках геосреды как система линейных уравнений

Построим модель геосреды, выбрав её объем так, чтобы на поверхности интересующей нас территории была установлена сеть приемников сейсмических сигналов, а внутри объема были расположены гипоцентры локальных землетрясений малой магнитуды, произошедшие в течение определенного периода времени. Объем разбивается на прямоугольные блоки, размер которых определяется параметрами зарегистрированных сейсмических волн. Каждый сейсмический луч имеет свое время пробега τ от точки гипоцентра до приемника. Совокупность сейсмических лучей пронизывает изучаемый объём. Так как гипоцентры распределены в пространстве неравномерно, часто кластерами, то не все блоки заполнены лучами.

Для многих районов известны усредненные модели скорости сейсмической волны, как на локальном, так и на региональном уровне. Они выявлены по данным глубинного сейсмического зондирования (ГСЗ), когда вместо природных источников сейсмических событий использовались взрывчатые вещества, имитирующие эти события. Таким образом, функция усреднённой скорости $v_0(z)$, где z – глубина, может быть задана. Для такой функции можно вычислить время пробега каждого луча $\tilde{\tau}$, решая прямую задачу. Делая предположение [13] о том, что функция реальной скорости v(x, y, z) является суммой функции $v_0(z)$ и функции малых вариаций скорости $\delta v(w, z)$ относительно усреднённой скорости $v_0(z)$, следуя теории линеаризации [13], можно записать:

$$\tau = \tilde{\tau} + \int_L \frac{\left[-\delta v(w,z)\right]}{v_0^2(z)} ds .$$
⁽¹⁾

Интегрирование ведется вдоль пути луча L в невозмущенной среде. Предполагается, что вариации скорости $\delta v(w, z)$ достаточно гладкие и могут изменить путь луча лишь на небольшую величину. Невязка времени пробега это разница между наблюдённым временем пробега τ и временем $\tilde{\tau}$, теоретическим, вычисленным для модели усреднённой скорости района. Обозначим ее как $\bar{\tau}$. Для каждого луча, прошедшего через K блоков интеграл в уравнении (1) может быть представлен как сумма интегралов вдоль путей луча l в отдельно взятых блоках:

$$\bar{\tau} = \sum_{k=1}^{K} \int_{l_k} \frac{[-\delta v(w,z)]}{v_0^2(z)} ds_0$$
(2)

Введем обозначения: $\bar{v}_k = \delta v(w, z)$ и $g_k = -\frac{\int_{l_k} ds_0}{v_0^2(z)} = -\frac{l_k}{v_0^2(z)}$.

Тогда для отдельно взятого сейсмического луча n уравнение (2) запишется как:

$$\bar{\tau}_n = \sum_{k=1}^{\kappa} \bar{\nu}_k \ g_k \ . \tag{3}$$

Для N лучей, зарегистрированных в объеме геосреды, получаем систему линейных уравнений:

$$\bar{\tau} = G\bar{\nu}, \tag{4}$$

где G – известная матрица размерностью $N \times K$, элемент которой g_{nk} равен длине пути n- го сейсмического луча в k- ом блоке среды, делённой на квадрат величины известной усреднённой сейсмической скорости в исследуемом районе. Зная функцию усреднённой скорости $v_0(z)$, можно вычислить длину пути каждого n- го луча. $\bar{\tau}$ – известный вектор, элемент которого $\bar{\tau}_n$ невязка времени пробега n- го луча, \bar{v} – неизвестный вектор, элемент которого \bar{v}_k вариация сейсмической скорости в k- ом блоке относительно усреднённой скорости в районе.

2. Метод выбранного координатного спуска как технология сейсморазведки

Метод выбранного координатного спуска в деталях описан в [12]. Отличительная черта метода от классического координатного спуска – в аналитическом решении, которое позволило определить направление минимума функционала в смысле метода наименьших квадратов через разработанные формулы, в то время как традиционный координатный спуск ищет направление спуска циклически, применяя вероятностные критерии [14]. Преимущество выбранного координатного спуска – в разработанном параметре разрешения, численное значение которого является оценкой достоверности того, насколько значение найденной компоненты неизвестного вектора линейной системы близко к точному значению [15].

Согласно подходу наименьших квадратов, традиционно используемому для численных методов, ставится задача минимизации функционала:

$$F(\bar{v}) = \|G\bar{v} - \bar{\tau}\|^2 .$$
(5)

Итерационные приближения будем искать в виде:

$$\bar{v}^i = \bar{v}^{i-1} + \vartheta_k \, e_k,\tag{6}$$

где e_k – единичный вектор, ϑ_k задаёт направление спуска через номер блока геосреды k, величина ϑ_k определяется из условия равенства производной нулю: $F'(\vartheta_k) = 0$:

$$\vartheta_{k} = \left(-\sum_{n=1}^{N_{k}} l_{k}^{n} \,\bar{\tau}_{n} / \sum_{n=1}^{N_{k}} (l_{k}^{n})^{2}\right) \,\vartheta_{0}^{2}(z),\tag{7}$$

где N_k – число лучей, которые пересекли k- ый блок геосреды, l_k^n – длина пути n – того луча в k- том блоке, $\bar{\tau}_n$ – невязка времени пробега n того луча, $\vartheta_0(z)$ – величина усредненной скорости на глубине, в пределах которой расположен k- ый блок.

Подставим выражение (7) для расчета ϑ_k в формулу (6). Полученную формулу детального расчета $\bar{\vartheta}^i$ подставим в выражение (5) вместо $\bar{\vartheta}$ для расчета значения функционала. После преобразований получаем, что значение функционала на *i* шаге итерации зависит от выбора направления спуска *k* (выбора номера блока) на предыдущем *i* – 1 шаге следующим образом:

$$F^{(i)}(\bar{\vartheta},\mathbf{k}) = F^{(i-1)}(\bar{\vartheta},\mathbf{k}) - \hat{\vartheta}(\mathbf{k}),\tag{8}$$

где $\hat{\vartheta}(k) = \frac{(\sum_{n=1}^{N_k} l_k^n \bar{\tau}_n)^2}{\sum_{n=1}^{N_k} l_k^n}$. Из уравнения (8) следует, что выбор *k*, для которого значение величины $\hat{\vartheta}(k)$ максимально по модулю, обеспечит минимальное значение функционала.

3. Результат применения вычислительной технологии

Данные регистрации времен вступлений продольных сейсмических волн от локальных землетрясений, которые произошли в течение 1987-1989 гг. в заливе Скьяльфанди, сформировали известный вектор линейной системы (4). Рисунок 1 показывает карту рельефа изучаемого района. Оттенки зеленого и коричневого цветов соответствуют разным уровням низменности и возвышенности.

Рис. 1. Карта рельефа залива Скьяльфанди. Разлом Хусавик обозначен прямой линией черного цвета. Город Хусавик показан условным знаком. Кривая линия оконтуривает берег

Рисунок 2 иллюстрирует сейсмические скорости, вычисленные по аномалиям, полученным в результате решения системы для глубин риска бурения. Вариации скорости в районе представлены на фоне усредненного поля исходной модели. Распределение низкоскоростных (оттенки красного цвета) и высокоскоростных (оттенки синего цвета) аномалий позволяет выявить следующее. На глубинах 5-10 км залив Скьяльфанди характеризуется занижением сейсмической скорости до Vp=6.7 км/с. Это согласуется с результатом вычисления скорости для района газового поля Гримси Vp=6.4 км/с [16], расположенного в северо-западном направлении от залива Скьяльфанди. Значение скорости в поле Гримси так же занижено относительно усредненной скорости в районе. Так же, как и в случае залива Скьяльфанди, замеры газов на морском дне Гримси, показали, что основной составляющей смеси газов является метан.

Отметим, что обнаруженная в заливе Скьяльфанди низкоскоростная аномалия «врезается» в прибрежную часть и распределяется по низменности, в то время как высокоскоростная вариация соответствует возвышенности, на которой расположен город Хусавик. Таким образом, вычисленные структуры не противоречат особенностям рельефа в прибрежной зоне залива.

Рис. 2. Низкоскоростные и высокоскоростные аномалии, вычисленные методом выбранного координатного спуска

Отсутствие явно выраженных контрастных скоростных неоднородностей в заливе Скьяльфанди предполагает, что здесь не должно быть сильной сейсмичности. Этот результат подтверждается фактами мониторинга за 1995-2020 гг. [17]. На участке разлома Хусавик в заливе события малой магнитуды регистрировались, но их предельно мало.

4. Заключение

Выявленные пониженные скорости сейсмической волны в глубоком слое, следующим за осадочными отложениями, могут свидетельствовать о флюидонасыщенности геосреды. Это согласуется с предложением авторов [7] о подъеме углеводородов из коры вместе с флюидами высокой температуры к поверхности.

Либо, учитывая данные современных измерений [5,6], о которых было сказано выше, можно предположить, что занижение скорости связано с повышенной концентрацией газа в локальных местах. Биогенное происхождение метана предполагает его размещение в осадочном слое, однако при повышении температуры не исключается его присутствие на большей глубине. В связи с плохим разрешением поверхностного слоя от 0 до 5 км, мы не можем там демонстрировать сейсмические скорости. В то же время, результаты высокого разрешения, полученные для диапазона глубин 5-10 км, могут быть использованы. Присутствие нескольких площадей выхода метана из морского дна не исключает локальные органические отложения глубже осадочной толщи. Более того, горение газа в период сильного землетрясения 1872 г. могло быть спровоцировано подвижками вдоль разлома на большой глубине. И даже если за прошедшие 25 лет в заливе не зарегистрированы ощутимые землетрясения [17], тем не менее, можно предположить нахождение природных газов на глубинах 5-10 км в условиях слабой деформации современной геосреды.

Найденные особенности скоростного строения района потенциального скопления углеводородов могут быть использованы для месторождений Сибири. Мы провели детальный анализ тектонической карты Арктики [18] и определили, что существует явная схожесть распределения конфигураций разломов и линеаментов для провинций высокоширотной Арктики, которые берут начало от широты исследуемого региона Исландии и продолжаются до провинций Сибири. Например, широта исследуемого района совпадает с широтой Заполярного нефтегазоконденсатного месторождения в Салехарде (Западная Сибирь). В то же время известно, что запасы Западной Сибири истощены, а Восточная Сибирь нуждается в изучении. Заметим, что найденный идентификатор района углеводородных запасов в виде пониженной скорости продольной сейсмической волны для диапазона глубин 5-10 км относится не к истощенным, а к потенциально существующим новым месторождениям.

Учитывая возможные экологические риски (провокация землетрясения, обрушения скважин при глубоком бурении) управление топливно-энергетическими ресурсами невозможно без проектов по

предварительному определению характеристик территориальных объектов. Проекты должны включать сбор данных сейсмического мониторинга, применение высокоточных методов обработки данных для достижения робастных оценок.

Литература

- 1. Еремин Н.А., Шумский Б.В., Шабалин Н.А., Еремин А.Н. Новые результаты геологических исследований транзитных зон северо-восточной части Азовского моря // Геология нефти и газа. 2017. Вып. 1. С. 43–51.
- 2. *Еремин Н. А., Сарданашвили О.Н., Пономарева И.А.* Скифская плита в режиме on-line. Инновационные технологии освоения нефтяных месторождений в реальном времени» // журнал «Neftegaz.RU». 2015. N 11-12. Id 671376.
- Dobson P.F., Asanuma H., Huenges E., Poletto F., Reinsch T., Sanjuan B. Supercritical Geothermal Systems A Review of Past Studies and Ongoing Research Activities // In Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering. – Stanford, 2017. – P. 670–682.
- 4. Поварова Л.В. Экологические риски, связанные с эксплуатацией нефтяных месторождений // Отраслевые и прикладные исследования: Науки о земле. 2018. С. 112–122.
- Richter B., Driscol N., Detrick R.S., Fornari D., Brandsdottir B. Recently Discovered Near-Shore Gascharged Sediments and Pockmarks, Northern Iceland // American Geophysical Union, Fall Meeting. – 2003. – Id OS51B-0854.
- 6. *Richter B., Brandsdottir B., Geptner A., Driscoll N., Boejesen-Koefoed J.* Hydrocarbon prospect of the Tjornes Fracture Zone, north of Iceland // American Geophysical Union, Fall Meeting. 2005. Id OS33C-1487.
- Geptner A.R., Richter B., Pikovskii Y., Chernyansky S.S., Alexeeva T.A. Polycyclic aromatic hydrocarbons as evidence of hydrocarbon migration in marine and lagoon sediments of a recent rift zone (Skjálfandi and Öxarfjörður), Iceland // Geochemistry. – 2006. – Vol. 66(3). – P. 213–225.
- 8. *Plummer B.F.* Structure and Photochemistry of Cyclopentene-Fused Polycyclic Aromatic Hydrocarbons // Polycyclic Aromatic Compounds. 1993 Vol. 3(2). P. 77–88.
- Смагличенко Т.А., Якоби В., Смагличенко А.В., Ахметзянов А.В. Инновационные численные методы на примере 3D сейсмического просвечивания природной зоны с газовыми скоплениями // Управление развитием крупномасштабных систем (MLSD'2020): труды тринадцатой междунар. конф. – М.: ИПУ РАН, 2020. – С. 764–772.
- 10. *Никонов А.А.* Крымские землетрясения 1927 года: неизвестные явления на море // Природа. 2002.– N 9. С. 13–20.
- 11. Rognvaldsson S., Gudmundsson A., Slunga R. Seismotectonic Analysis of the Tjornes Fracture Zone, an Active Transform Fault in North Iceland // J. Geophys. Res. 1998. Vol. 103. P. 30117-30129.
- 12. *Smaglichenko T., Smaglichenko A.* Identification of Inhomogeneities: The Selected Coordinate Descent Method Applied in the Drilling Area // Mathematics. 2023. Vol. 11. Id 4297. DOI: 10.3390/math11204297.
- 13. Лаврентьев М.М., Романов В.Г. О трех линеаризированных обратных задачах для гиперболических уравнений // Докл. АН СССР. 1966. Вып. 171:6. С. 1279–1281.
- 14. Wright S.J. Coordinate descent algorithms // Math. Program. 2015. Vol. 151(1). P. 3–34. DOI: 10.1007/s10107-015-0892-3.
- 15. Smaglichenko T.A., Smaglichenko A.V. Resolution Estimates for Selected Coordinate Descent: Identification of Seismic Structure in the Area of Geothermal Plants / In: Dolgui A., Bernard A., Lemoine D., von Cieminski G., Romero D. (eds) // Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. IFIP Advances in Information and Communication Technology. – Switzerland: Springer, 2021. – Vol. 630. – P. 580–588. – DOI: 10.1007/978-3-030-85874-2_62.
- 16. Smaglichenko T.A., Jacoby W., Smaglichenko A.V. Alternative 3D Tomography Methods and Their Applications to Identify Seismic Structure Around the Hydrothermal Gas Field // Proceedings of 2020 Eleventh International Conference "Management of large-scale system development" (MLSD) / Moscow (September 2020r.). – Institute of Electrical and Electronics Engineers (IEEE), 2020. – Id 3170.
- 17. Einarsson P., Brandsdóttir B. Seismicity of the Northern Volcanic Zone of Iceland // Front. Earth Sci. 2021. Vol. 9. Id 628967. DOI: 10.3389/feart.2021.6289.
- 18. Тектоническая карта Арктики / ред. О.В. Петров, М. Пубелье (ВСЕГЕИ/СGMW). СПб.: ВСЕГЕИ, 2019.– 72 с.